
lable at ScienceDirect

Water Research 158 (2019) 291e300
Contents lists avai
Water Research

journal homepage: www.elsevier .com/locate/watres
Unsteady pressure patterns discovery from high-frequency sensing in
water distribution systems

Lu Xing, Lina Sela*

Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Texas, 78712, USA
a r t i c l e i n f o

Article history:
Received 22 November 2018
Received in revised form
18 March 2019
Accepted 25 March 2019
Available online 28 March 2019

Keywords:
Transients detection
CUSUM
Dynamic time warping
K-means clustering
* Corresponding author.
E-mail addresses: xinglu@utexas.edu (L. Xing), lin

https://doi.org/10.1016/j.watres.2019.03.051
0043-1354/© 2019 Elsevier Ltd. All rights reserved.
a b s t r a c t

Pressure transients have been identified as one of the major contributing factors in many pipe failures in
water distribution systems (WDSs). The behavior of these pressure transients is largely unknown and
cannot be fully assessed by numerical simulation or modeling. This study investigates the behavior of
pressure transients in WDSs as measured by high-frequency pressure sensors. A Time Series Data Mining
(TSDM) approach is proposed to detect and cluster pressure transients to reveal recurrent and consistent
patterns. The proposed technique, based on a modified two-sided cumulative sum (CUSUM) algorithm, is
used to detect pressure transients. Dynamic Time Warping (DTW) is adopted to measure the similarity
between the detected pressure transients, and k-means clustering algorithm is used to discover the
characteristic patterns. Several performance scores are suggested to evaluate the quality of the clustering
results, including sum of squared error, Silhouette index, and Calinski-Harabaz index. Results demon-
strate that the proposed approach is able to reveal consistent and unique patterns across multiple
sensing locations. The proposed approach provides a fast and efficient way to discover the hidden in-
formation in WDSs by analyzing high-frequency pressure signals from distributed sensors.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Spanning over one million miles across the United States (U.S.),
water distribution systems (WDSs) function as complex infra-
structure networks to maintain the reliable and safe supply of
drinking water (USEPA, 2016). The American Society of Civil Engi-
neers (ASCE) estimates that the aging and deteriorating in-
frastructures are wasting 14%e18% of the treated water (ASCE,
2017). Due to the relation between pressure, pipe failures, and
water loss, pressure management has become one of the most
popular management interventions implemented by water utilities
in their efforts to reduce pipe failures and water loss (McKenzie and
Wegelin, 2009). The primary objective of almost all measures of
pressure management constitutes reducing the maximum steady
amplitude and the excessive unsteady variability of the pressure.
While the contributions of the former to pipe failure have been
intensively studied (Kabir et al., 2015;Martínez-Codina et al., 2015),
there is a lack of quantitative research on the roles that the latter,
pressure variability, plays in WDSs (Ghorbanian et al., 2016).
asela@utexas.edu (L. Sela).
Flow conditions in pipelines can be disrupted by pipe failures
(background leakages and bursts), system operations, and demand
fluctuations, consequently creating corresponding unsteady
changes in water pressure, commonly termed pressure transients
or water hammers. These events occur quickly but have the po-
tential to result in the pipe deterioration by introducing extreme
pressure variability and intriguing fatigue (Starczewska et al.,
2015). Despite the general understanding that pressure variability
can contribute to pipe deterioration, limited research has focused
on investigating these relations quantitatively (Hoskins and
Stoianov, 2014).

Historically, the main reasons for this lack of understanding are
the technological constraints, such as the limited availability of
high-resolution pressure transmitters to measure the pressure and
the computation capacity to process the data. Therefore, most
studies about pressure transients were restricted to modeling
(Wylie et al., 1993; Ghidaoui et al., 2005) using various of numerical
simulation techniques (De Almeida and Koelle, 1992; Karney and
McInnis, 1992; Boulos et al., 2005; Wood et al., 2005; Chaudhry,
2014). On the basis of these numerical simulation, various studies
have been conducted to investigate drinking water quality due to
pressure transients (Ebacher et al., 2012), leak detection (Brunone
and Ferrante, 2001; Colombo et al., 2009), pipe deterioration and
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corrosion assessment (Gong et al., 2012). Unfortunately, without
the availability of high-resolution pressure data, the validation of
the numerical results has been limited.

Over the past few years, the rapid development of data logging
and data mining technologies has relieved some of the aforemen-
tioned constraints and made it possible to investigate the pressure
transients in WDSs in a more rigorous manner. The emerging ap-
plications of low-cost high-frequency transient pressure trans-
mitters (TPTs), introduced to continuously monitor water pressure,
directly contribute to the pressure management in WDSs (Allen
et al., 2011; Trimble Water Website, 2018; Visenti, 2018). High
frequency pressure data have been foremost utilized to validate and
calibrate the simulation models by comparing and fitting the nu-
merical results to collected pressure data (Friedman and Friedman,
2004; Ebacher et al., 2010; Meseguer et al., 2014; Rathnayaka et al.,
2016). More recently, data-driven approaches have been proposed
to detect and localize pipe bursts and leaks (Misiunas et al., 2005;
Srirangarajan et al., 2013; Lee et al., 2015b; Wu et al., 2016).

The scope of previous works has been limited due to the typi-
cally short duration of sensors deployment and more importantly
low sampling frequency. However, pressure transients, reflecting
the responses of WDSs to normal and abnormal changes, are
manifested as pressure waves traveling in the WDSs with very high
velocity in the range of 100e1400m/s (Ghidaoui et al., 2005). This
implies that lower sampling resolutions (� 5� 15min) character-
istic of Supervisory Control and Data Acquisition (SCADA) systems
prevent from monitoring transient pressures and high resolution
pressure data are necessary to capture and investigate the behavior
of pressure transients (Srirangarajan et al., 2013). TPTs extend the
capabilities of traditional SCADA systems by providing real-time
information at a fine spatial-temporal resolution that was previ-
ously unavailable. The high-resolution pressure data reveals addi-
tional valuable information of WDSs, thus contributing to the
improvement of network control, pressure management, water loss
control, pipe burst and leakage detection (Puust et al., 2010; Lee
et al., 2015a). On the other hand, the enormous volumes of high-
resolution pressure data, as utilized in this work, present new
challenges in data analysis, information extraction and knowledge
discovery. In addition, none of the prior studies considered using
the data collected by the TPTs to characterize the typical patterns of
pressure transients occurring in WDSs and the corresponding
usteady pressure variability.

Motivated by the availability of high-frequency pressure data
collected over an extended period of time, we propose a time series
data mining procedure to detect the pressure changes and discover
the patterns of pressure transients from high-resolution pressure data
collected by a network of TPTs. Explicitly, the objectives of this work
are to: (a) deploy a network of high-frequency TPTs for an extended
period of time at various locations in a WDS; (b) automate the
detection of transient pressure changes; (c) automate the classifi-
cation of transient pressure patterns and pressure intensity; and (d)
quantitatively assess and validate the proposed approach.

2. Methods

In this study, time series data mining (TSDM) is identified as a
promising approach to explore the behavior of pressure transients
in WDSs. TSDM refers to the process of non-trivial extraction of
implicit, previously unknown and potentially useful information
from time series data (Fayyad et al., 1996). A two-step TSDM
approach is proposed for transient detection and pattern discovery
based on high-resolution pressure data collected by a network of
pressure sensors. In the first step, raw pressure data are pre-
processed, from which pressure changes are detected based on a
modified cumulative sum control chart (CUSUM) approach. In the
second step, the pressure transients are extracted from the original
time series and then clustered based on their similarity; it follows,
then, that a prototype is discovered for each cluster to represent the
corresponding characteristic pattern. Finally, pressure intensity
plots are generated to assess the pressure variability for each
characteristic transient. The main steps of the proposed algorithm
are described in subsequent sections and depicted in Fig. S1 in the
Supporting Information (SI).
2.1. Time series representation

Due to the impulsive noises and large dimensionality presented
in the raw pressure time series, the first step in this analysis is to
represent the time series in a lower dimensional space. Time series
representation is integral in several perspectives (Aghabozorgi
et al., 2015): firstly, it reduces the dimension of the original data
so that efficiency of the TSDM techniques can be significantly
improved (Keogh et al., 2004); secondly, it is capable of eliminating
noises, the distracting information in the raw data, thus allowing
the processes, e.g., distance measurement and clustering, to focus
on the actual functional data while minimizing the bias towards
noises (Ratanamahatana and Keogh, 2005). Myriad techniques
have been developed for time series representation, including but
not limited to Fourier transformations (Agrawal et al., 1993; Keogh
et al., 2001), wavelets (Chan and Fu, 1999), symbolic aggregate
approximation (SAX) (Lin et al., 2003), and piece-wise aggregate
approximation (PAA) (Keogh and Pazzani, 2001). A comprehensive
review of time series representation can be found in Aghabozorgi
et al. (2015) and Keogh et al. (2004).

In this study, PAA is adopted to reduce the dimensionality of the
measured pressure time series due to its simplicity and high
computational performance (Keogh et al., 2004). The main idea
behind PAA is to reduce the dimensionality of the original data
through data integration over time. Given a time series X ¼ ðx1; x2;
…;xnÞ and the dimension of the transformed space N, we index
ð1 � N � nÞ and assume that N is a factor of n. Then, the time series
X of length n can be represented in N space by a vector X ¼ ðx1;x2;
…;xNÞ. The ith element of X is calculated by the following equation
(Keogh and Pazzani, 2001):

xi ¼
N
n

XnNi

j¼n
N ði�1Þþ1

xj (1)

Ultimately, PAA algorithm reduces the time series from n di-
mensions to N dimensions by dividing the data into N equally sized
segments. The resolution of PAA algorithm is then defined by the
resolution of the resulting N-dimensional data.
2.2. Change detection

To demonstrate the proposed procedure, it is imperative to
define two events used throughout this work:

� Change: defined in relation to the preceding data that is
occurring faster than the expected rate and greater than the
expected amplitude, including positive (raise) and negative
change (drop). The analysis in this section pertains to pressure
change detection.

� Transient: refers to any pressure wave that is short lived.
Pressure transients may include several changes. The analysis in
the subsequent three sections pertains to pressure transient
extraction.
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A growing number of techniques have been developed to detect
changes in high-frequency pressure signals (Colombo et al., 2009;
Xu and Karney, 2017) where discrete wavelet transformation
(DWT) (Ferrante et al., 2007; Srirangarajan et al., 2013; Lee et al.,
2015b) and CUSUM (Misiunas et al., 2005; Lee et al., 2015b) are
the two most widely-used techniques. DWT-based algorithms
decompose the one-dimensional pressure signal into different
temporal and frequency scales by computing the convolution of the
pressure signal with a given wavelet of different period and phase.
The decomposition permits the exploration of the temporal vari-
ability in the signal at different scales. For example, one can employ
lower-scale decompositions for the localization of high-frequency
components, or apply higher-scale decompositions for the locali-
zation of low-frequency components to retain more global infor-
mation. As the decomposition level of DWT increases, the noises in
the signal are suppressed and the singularities are emphasized
(Mallat and Hwang, 1992; Ferrante et al., 2007). This property
makes DWT a promising approach for detecting abrupt changes.

However, it does not serve as an appropriate option in our
application for several reasons. Firstly, it is possible that the minor
pressure changes are emphasized and recognized as significant,
thereby leading to false alarms (Lee et al., 2015b). Secondly, the
performance of DWT largely depends on the mother wavelet; thus,
it is integral to choose a mother wavelet that resembles the natural
variability of the data (Khalil and Duchêne, 1999). Consequently, it
is difficult to choose an appropriate mother wavelet to resemble all
pressure changes, which are essentially different. Thirdly, the pa-
rameters in DWT, such as the level and the threshold of the
decomposition coefficients, are nonintuitive with vague physical
meanings, making it difficult to determine these parameters.

In this work, we rely on the modified CUSUM detection scheme
since it exhibits the following characteristics: (a) the scheme has no
bias on the change patterns and is able to detect changes of any
shape as long as it occurs faster than expected rate and greater than
expected amplitude; and (b) the scheme is highly interpretable, i.e.,
involving as few parameters as possible that have clear physical
meanings and can be determined using design principles.

The traditional two-sided CUSUM was proposed by Page (1954)
as two repeated uses of sequential probability tests for detecting an
increase, cþ, and the decrease, c�, in the mean of the signal
(Gustafsson, 2000). The CUSUM calculation is initialized by setting
cþð0Þ ¼ c�ð0Þ ¼ 0. At each time step, t, CUSUM tracks the char-
acteristics of the changes in the pressure signal, i.e., rate and
magnitude, and compares these characteristics with control limits,
i.e., drift and threshold, as follows:

8<
:

dpðtÞ ¼ pðtÞ � pðt � 1Þ
cþðtÞ ¼ cþðt � 1Þ þ dpðtÞ � drift
c�ðtÞ ¼ c�ðt � 1Þ � dpðtÞ � drift

(2)

where pðtÞ is the pressure data collected at time t, dpðtÞ is the
pressure variation between time t and t� 1, and drift represents the
minimum countable change rate. If either cþðtÞ and c�ðtÞ are
greater than zero, indicating that the pressure change within one
time step is larger than drift, then either cþðtÞ or c�ðtÞwill increase,
respectively. Otherwise, when the pressure change per time step is
smaller than the minimum countable change rate, drift, cþðtÞ or
c�ðtÞwill be set to zero, and the corresponding time will be labeled
as a candidate start time (t0s ¼ t) of the prospective change. Then, as
the changes accumulate, when either cþðtÞ or c�ðtÞ exceed the
specific control limit threshold, an alarm is raised, marking the
detection of an abrupt change; it follows, then, that the alarm (ta ¼
t) and the start (ts ¼ t0s) times are recorded.

The physical meaning of the two parameters is clear: drift, re-
lates to the control limit of the pressure changes within one time
step, and threshold, represents the control limit of the accumulative
amplitude of change. However, quantitatively, since cþ or c� are
subtracted by drift every time step, they are significantly smaller
than the actual pressure change between the start point and the
alarm point. As a result, threshold does not control the actual limit
of the pressure change amplitude, but a considerably smaller value
instead, especially when drift is a large number. To resolve this
problem, cþreal and c�real are introduced to record the actual ampli-
tude of the pressure change, as defined below:(
cþrealðtÞ ¼ cþrealðt � 1Þ þ dpðtÞ
c�realðtÞ ¼ c�realðt � 1Þ � dpðtÞ (3)

As before, per-time-step pressure changes that are smaller than
drift are eliminated by setting cþ, c�, cþreal and c�real to zeros and the
candidate start time (ts0) is labeled based on the positiveness of cþ

and c�. The major modification is that cþreal and c�real, instead of cþ

and c�, are adopted as the test statistics to test whether the
amplitude of pressure changes exceed the threshold. In other words,
the alarm timestamps (ta) are recorded based on the relative rela-
tion between cþreal or c

�
real and threshold. Thereby, the threshold can

represent the exact amplitude limit for the pressure changes. Al-
gorithm 1 summarizes the modified CUSUM algorithm to detect
abrupt changes in the pressure signal.

To detect the end time of the change (te), the same procedure is
executed on the reverse time series. Then, (ts) and (te) respectively
denote the starting and ending time of the change detected at
alarm time (ta). In the results section, wewill show how cþ; c�; cþreal;
c�real are updated as well as how drift and threshold are selected
based on the events of interest. At the end of the change detection
process, we are able to automatically detect rapid changes in the
pressure signal.

2.3. Transient extraction

A collection of subsequent pressure changes forms a pressure
transient event (as defined in the previous section). After individual
changes are detected, pressure data of a certain duration, i.e.,
window size, are collected for further analysis. The analysis win-
dow is required to contain sufficient amount of information to
represent a complete transient event, including several sequential
pressure changes. Moreover, as a pressure transient dissipates, by
the end of an analysis window, we expect the unsteady pressure to
stabilize without significant oscillations. To identify the character-
istic window size, we define the absolute pressure difference be-
tween the last two points of the analysis window as:

dp ¼ jp�1 � p�2j (4)

where the pressure difference at the end of the transient should
approach zero, dp/0. In the results section, we provide details on



Fig. 1. DTW distance between signal X1 and signal X2 with limited bandwidth w, the
shaded matrix represents the cumulative distance g; the solid line represents the
warping path with minimum cost. The darker elements represent lower cumulative
distances.
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selecting the characteristic window size for pressure transients
based on the mean and variance of dp.

2.4. Distance measure

Distance measure, quantitatively illustrating the level of simi-
larity between sequences, is of fundamental importance to a variety
of time series mining tasks, including clustering. Time series dis-
tance measures could be classified into three categories: model
based metric, non-elastic metric, and elastic metric (Aghabozorgi
et al., 2015). In model based metrics, such as ARMA process
(Kalpakis et al., 2001; Xiong and Yeung, 2002), the original data are
first fitted into a certain statistical model, and then distances are
measured based on the parameters of the fitted model. Non-elastic
metrics, such as Euclidean distance, operate in the time domain and
measure the distance by comparing the values at each time step. In
contrast, elastic metrics compensate for potential temporal
misalignment through some elastic adjustment (Lines and Bagnall,
2015). Thereby, if the occurrence of the patterns in time is of
concern, elastic metrics, such as dynamic time warping (DTW)
(Berndt and Clifford, 1994), allow robust time distance calculation,
while non-elastic metric can be extremely brittle because of their
sensitive nature to distortions in time axis (Chu et al., 2002).
Therefore, the DTW elastic distance metric is adopted in this study.

The DTW algorithm, as the most widely-used elastic metric, can
be briefly introduced as follows (Keogh and Pazzani, 2001): to align
two given time series X1 ¼ ðx11; x12;…; x1nÞ and
X2 ¼ ðx21; x22;…; x2mÞ using DTW, an n�m Euclidean distance
matrix (d) is first constructed, with dði; jÞ being the Euclidean dis-
tance between points x1i and x2j. Predicated on the Euclidean dis-
tance matrix, the cumulative distance matrix (g) and the
corresponding wrapping path, i.e. the pathminimizing thewarping
cost between the two signals, are calculated using dynamic pro-
gramming as shown in Equation (5). The control variablew restricts
the bandwidth of the search path and thus limits the allowed
temporal misalignment between the two signals (Fu et al., 2008).

gði; jÞ ¼ dði; jÞ þminfgði� 1; j� 1Þ;gði� 1; jÞ;gði; j� 1Þ g;
j�w � i< jþw

(5)

Intuitively, Equation (5) recursively computes the least-cost
distance between each pair of points ði; jÞ while considering the
pairwise Euclidean distance dði; jÞ plus the cumulative distances it
takes to get to point ði; jÞ from ð0;0Þ and allowing for i and j to take
any values, i.e. not restricting the path to be i ¼ j as in the Euclidean
distance. Then, gðn;mÞ represents the DTW distance. Fig. 1 sche-
matically illustrates the DTW distance measure with a limited
bandwidth w, where each cell in the shaded matrix represents the
cumulative distance gði; jÞ, and the solid white line represents the
warping path with minimum cost between the two signal X1 and
X2. In our application, different pressure signals are expected to
exhibit temporal misalignment (e.g. starting time of the signal) as
well as different shapes and magnitudes. The DTW distance mea-
sure calculates the best match that accounts for the temporal shift,
elongation, and compression of the signals in time domain. Hence,
the DTW distance allows capturing the general shape of the signal,
rather than the perfect matching. Once defined, the DTW distance
measure can be used to evaluate the similarity between different
pressure transient signals extracted in previous step.

2.5. Pattern discovery

The objective of pattern discovery is to identify an unknown
subset of signals that occur frequently in a dataset and then make
high level summaries of the massive data set accordingly. In this
study, pressure transient signals have already been identified from
the complete time series based on the detected changes and
extracted transients in previous sections. The next step is to classify
the characteristic patterns from the set of extracted pressure
transients. For this objective, clustering is the most commonly used
technique (Fu, 2011) as a solution for classifying enormous data
without early knowledge about the classes (Aghabozorgi et al.,
2015). The problem of time-series clustering is defined as follows
(Aghabozorgi et al., 2015). Given a dataset (D) composed of n time-
series signals D ¼ fX1; X2; …; Xng, the process of unsupervised
partitioning of D into C ¼ fC1; C2;…; Ckg, in such a way that ho-
mogeneous time-series are grouped together based on a certain
similaritymeasure, is called time-series clustering. Then, Ci is called
a cluster, where D ¼ ∪k

i¼1Ci and Ci∩Cj ¼ Ø for isj.
Various algorithms have been developed to cluster time series

data, including k-means, k-medoids, agglomerative hierarchical,
self-organizing maps (Liao, 2005) in myriad domains (Tran and
Wagner, 2002; Lee et al., 2006; Fu, 2011). Among all clustering al-
gorithms, k-means clustering is the most popular one because of its
computational efficiency and performance (Han et al., 2001; Wu
et al., 2008). The procedure of k-means clustering can be briefly
explained as follows. Initially, k objects are randomly selected, each
of which represents an initial center or mean of a cluster. Secondly,
each object in the data set is assigned to the closest cluster based on
the distance measured between an object in the dataset and the
center of the cluster mean. Thirdly, the newmean for each cluster is
recalculated based on newly classified objects. The process iterates
until some criteria function converges or no improvement/change
is achieved. The DTW distance measure is used to cluster pressure
transients using the k-means algorithm.

The objective of this study is to reveal recurrent and consistent
patterns of the pressure transients; therefore, a prototype is
required to represent each cluster. Herein, the prototype of the ith

cluster is defined as its medoid (Mi), whose DTW distance to all
other transients in that cluster is minimal.
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3. Results and discussion

3.1. Data preparation

The methodology proposed here is tested on real data, collected
by high-frequency transient pressure transmitters distributed in a
large water utility. Each TPT unit includes a pressure sensor taking
64 samples per second and a remote telemetry unit, which trans-
mits the data to a server. The TPT unit is mounted on a fire hydrant
as shown in Fig. 2(a). An example of a pressure signal recorded by a
TPT during one day is shown in Fig. 2(b). The dataset available in
this study is high-resolution pressure data collected by TPTs from
October 2017 to August 2018 and is provided in the SI.

As the preprocessing step, PAA segmentation is applied to the
raw pressure data to reduce dimension and eliminate noises. To
determine the dimensionality reduction, several resolutions are
tested. The effect of dimensionality reduction on the number of
detected pressure changes per day are compared in Fig. S2 of the SI.
As the PAA resolution gets coarser, the number of detected changes
decreases because of the averaging nature of PAA algorithm.
Additionally, the finer the PAA resolution, the more computation
effort is required for the proposed algorithms. Therefore, there is a
trade-off between efficiency and accuracy in the choice of PAA
resolutions. In this study, PAA resolution is chosen to be 10s, as this
provides the greatest gain in computational efficiency and only
small compromise in accuracy.
3.2. Change detection

The pressure changes detected by CUSUM algorithm are char-
acterized by the start time (ts) and the pressure at start time (pts ) as
well as the end time (te) and the pressure at end time (pte ). The
duration (T) of the pressure change is then defined by T ¼ te � ts.
This work focuses on significant and abrupt pressure changes
satisfying the following requirements, based on which the param-
eters in CUSUM algorithm are chosen:
Fig. 2. Change detection by applying CUSUM algorithm, where right arrows, left arrows, a
hydrant; (b) daily pressure data and the detected changes; (c) the zoom-in view of one press
the CUSUM results.
1. The pressure change is significant enough that the amplitude
(Dp) is greater than 10 psi:

Dp ¼ pte � pts >10 psi (6)

Accordingly, the threshold parameter of CUSUM algorithm is set
to 10 psi.

2. The pressure change is abrupt enough that the rate of change is
greater than 0.1 psi/s:

dp
dt

¼ pnþ1 � pn
tnþ1 � tn

>0:1 psi=s (7)

where dt is the PAA resolution. In this study, dt equals 10 s because
the PAA resolution is set to be 10 s. Therefore, the drift parameter is
set to 0:1 psi=s� 10 s ¼ 1 psi.

With the parameters discussed above, Fig. 2(b) shows CUSUM
results of the pressure data collected from TPT#1 in the network
within a typical day, when 11 pressure changes are detected. The
right arrows represent the starting point ðts; pts Þ and the left arrows
represent the ending points ðte; pte Þ of the detected changes.
Fig. 2(c) illustrates the first two detected pressure change: a pres-
sure raise followed by a pressure drop, the combination of which
constitutes a pressure transient. The corresponding CUSUM results
for the first two detected changes are then presented in Fig. 2(d).
When the CUSUM value (cþreal or c�real) exceeds the threshold, rep-
resented by the red dashed line, an alarm will be raised, illustrated
by the red dots; consequently, the start and end point will be
recorded.

The CUSUM algorithm is then applied to pressure data collected
by TPT #1 during the entire time period, where 1314 pressure
changes were detected. The historical analysis of the pressure
changes is represented in Fig. S3 showing the distribution of the
pressure change amplitude (Dp) and pressure change duration (T).
Notably, the amplitude distribution is not symmetric about 0,
instead it is skewed towards the left, indicating that more negative
nd dots denote start, end, and alarm time respectively: (a) TPT#1 installed on a fire
ure signal with start (right arrow) and end (left arrow) points; (d) the zoom-in view of
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changes (drop) occurred than their positive counterparts (raise)
during this time period. The pressure change duration varies from
10 s to 150 s with an average duration of 60 s.
3.3. Transient extraction

The analysis window represents the duration of the pressure
transients and should encompass all necessary information to
represent a complete pressure transient event, typically comprised
of several pressure changes. For example, the transient event
shown in Fig. 2(c) constitutes two sequential pressure changes: one
positive change and one negative change. Subsequently, on the
basis of detected changes in the previous section, several window
sizes for transient extraction are tested and the absolute pressure
difference between last two points of the analysis window ðdpÞ is
calculated for the entire data. Fig. 3 shows themean and variance of
the dp distribution. It can be noticed that the mean and variance
decrease as the window size increases from 1min to 5min and
stabilize after that. Therefore, 5min, as the knee point, is chosen to
be the window size to extract transient events and perform the
following analysis. Based on the 1314 detected pressure changes,
586 5-min transient events are extracted from the original data.
3.4. Similarity search

In terms of similarity search, our interests lie in the similarity in
patterns instead of the absolute amplitude; therefore, the extracted
pressure transients are normalized. DTW distances between every
pair of the 586 normalized transient events are calculated with
bandwidth w ¼ 5, allowing a maximum temporal misalignment of
50 s, which is shorter than the mean duration of a typical pressure
change (60 s) (as shown in Fig. S3), thereby avoiding possible
excessivemisalignment. Consequently, the pairwise DTWdistances
comprise a 586� 586 distance matrix, of which the ði; jÞth element
represents the DTW distance between ith and jth transient event.
The distance matrix between each pair of detected pressure tran-
sients based on their chronological appearance is shown in Fig. 4(a).
The darker the ði; jÞth pixel, the lower the value of ði; jÞth element is,
and the more similar the ith and jth transient events are.

On the basis of DTW distance matrix, the normalized pressure
transients can then be mined by k-means clustering. Since in k-
means algorithm the number of clusters has to be predefined, we
experiment with different number of clusters. The results show
that three clusters are most informative in terms of identifying and
distinguishing the patterns for the given dataset. The evaluation of
the number of clusters is demonstrated in the next section. After
Fig. 3. Statistical description of pressure difference as a function of window size.
clustering, the transient events are sorted based on their cluster
labels and the corresponding distance matrix is shown in Fig. 4(b).
Compared with the distance matrix before clustering as in Fig. 4(a),
the matrix after clustering is generally better organized. Specif-
ically, three distinguished partitions can be identified, corre-
sponding to the three identified clusters. In addition, the diagonal
block matrices take lower values than the off-diagonal ones, indi-
cating that the within-cluster distances are smaller than the
between-cluster distances.

Fig. 5 shows the clustering results and the identified prototype
patterns for each cluster. Explicitly, Cluster 0 includes 212 down-
surge pressure transients, where pressure drops at the beginning
of the transient event, fluctuates and finally stabilizes. If we define a
pair of pressure increase and decrease as a cycle, Pattern 0 consti-
tutes a major cycle and a minor cycle. However, Cluster 1 comprises
251 up-surge transient events, characterized by starting with
pressure raise and following by a pressure drop. Only one major
cycle exists in this pattern and the pressure stabilizes at a higher
pressure level than the original. In Cluster 2, which is made up of
123 transient events, the representative pattern shares some sim-
ilarity with Pattern 1, but differs in that the pressure of Pattern 2
returns to original level when it stabilized.

Results for data collected at a different location, TPT#2, are
shown in Fig. S4, where four distinguishing patterns are identified.
Significant differences can be noticed between the pressure pat-
terns discovered in different stations. Several reasons can
contribute to these differences: (1) the relative location of the TPT
to the pumping station in the pressure zone; (2) the pumping
operation routine in the corresponding pumping station; and (3)
the characteristics of the piped network. These differences are
instructive in understanding the relation between the transient
patterns and pump operations or piped network characteristics,
and, in turn, their effects on pipe condition. Rapid changes in flow
generate pressure waves that travel through the pipelines. The
pressure signals undergo reflection and attenuation, but largely
maintain their shape throughout the system (Lee et al., 2015a). The
internal characteristics of the pipelines, such as material, diameter,
and friction, as well as external characteristics such as leaks and
blockages affect transient response and create changes to the shape
of the pressure wave (Xu and Karney, 2017). For example, the
occurrence of a leak releases some amount of flow through the
orifice, thus providing partial transient protection for the system
and modifying the magnitude of the transient pressure wave (Xu
and Karney, 2017). By analyzing the pressure signals in the time
and/or frequency domain system uncertain characteristics and
faults can be detected. A variety of transient reflection, damping,
and response technique as well as inverse optimization techniques
exist for identifying pipeline characteristics and/or faults by tracing
the changes in the time of arrival, magnitude, and shape of the
pressure transients (Colombo et al., 2009; Ghorbanian et al., 2016).

3.5. Clustering results analysis

Numerical criteria to evaluate the performance of the clustering
algorithm can be classified into two categories: external index,
which is appropriatewhen the labels of ground truth are given, and
internal index, which is appropriate when ground truth is un-
known (Aghabozorgi et al., 2015). In this study, we do not know in
advance the prototype of each cluster and which cluster each signal
should belong to. Therefore, only internal index is applicable. We
apply three internal indexes to evaluate the performance of the
cluster results and determine the optimal number of clusters (k):
(1) Silhouette Coefficient e a measure of how well a signal Xi is
assigned to its cluster (Rousseeuw, 1987), (2) Sum of Squared Error
(SSE) e describes the coherence of the given clusters (Han et al.,



Fig. 4. DTW distance between the pressure transients before (a) and after clustering (b).

Fig. 5. Clusters and their prototypes at TPT #1.
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2011), and (3) Calinski-Harabaz (CH) Index e defined as the ratio
between the within-cluster dispersion and the between-cluster
dispersion (Cali�nski and Harabasz, 1974). Detailed explanation of
the three indexes can be found in the SI.

Fig. 6 shows Silhouette coefficient, SSE, and Calinski-Harabaz
index as a function of the number of clusters for pressure tran-
sients recorded at TPT #1. Both averaged Silhouette coefficient and
Calinski-Harabaz index peak at three clusters, which is also the
knee point for SSE curve. Therefore, cluster number of three is
identified as the most informative setting for the given pressure
data, as shown in Fig. 5. Similar analysis was conducted for TPT#2,
which resulted in four significant transient clusters (see Figs. S6 and
S7).
3.6. Pressure intensity

Pressure transients, as shown in this work, are intrinsically
cyclical due to the inherent diurnal pumping operations and de-
mand patterns, and may impose excessive internal stress on the
pipelines. Cyclic load, or fatigue, is the most predominant me-
chanical force that can substantially contribute to pipe failures
(Schijve, 2009; Yu et al., 2016). Fatigue failure is caused by repeated
alternating stresses of an intensity considerably below the normal
strength and it strongly depends on the frequency, intensity, and
shape of the stress cycles (Cui, 2002; Schijve, 2009; Rajani and
Kleiner, 2010). Having identified the shapes of the characteristic
transients, we can evaluate the frequency and intensity of each type
of transient event. Pressure intensity is calculated as the absolute
difference between the minimum and maximum pressures in a
given transient event, and frequency is the number of times a given
range of pressure intensity was observed. Fig. 7 shows the cumu-
lative probability distributions of pressure intensity for the three
characteristic patterns identified in TPT #1. Upsurge patterns (solid
gray and black lines) show more frequent low-intensity transient



Fig. 6. The Silhouette coefficient, SSE, and Calinski-Harabaz index measured with different cluster number at TPT#1.
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and less frequent high-intensity transients. Contrary, the down-
surge patterns (dashed black line) show more frequent high-
intensity transients. Similar results for TPT #2 are shown in
Fig. S8 in the SI.

The frequency, intensity, and shape of the transient pressure
patterns discovered and extracted by the proposed method can be
applied to improve the work-flow of the calibration of numerical
transient models, which cannot be calibrated nor validated without
comparison with data. For example, in transient hydraulic analysis,
several pipeline parameters are required, including wave speed and
friction factor, the evaluation of which is not a trivial task. With the
availability of pressure data collected by pressure sensors, it is
possible that these parameters can be calibrated more rigorously
using inverse optimization techniques. However, if the calibration
is performed by minimizing the difference of observed raw pres-
sure and simulated pressure at each time step, it is highly possible
that the noises in the observed data would be exaggerated. To
resolve this problem, the shape, intensity, and frequency of the
patterns an be used as dynamic characteristics of transient pressure
to calibrate the numerical models in a more effective and efficient
Fig. 7. Cumulative probability distribution of pressure intensity for different clusters at
TPT #1: downsurges (dashed) and upsurges (solid).
manner. In the context of condition assessment, previous studies
have shown that pipe failures are not only related by the minimum
and maximum pressure as traditionally identified from transient
hydraulic analysis, but also highly correlated with the shape of
pressure transient patterns including duration, frequency, ampli-
tude, as well as sequence of cycles (Yu et al., 2016; Zhao et al., 2016,
2017). However, in water distribution systems the impact and
specific contributing features of pressure transients on pipe failures
are not yet clear. Therefore, the proposed methodology provides a
solid foundation for further studying the cause-effect relationship
between pressure transient patterns and pipe failures, thereby
contributing to a more comprehensive risk assessment.

4. Conclusion

In this paper, we propose a TSDM approach to investigate
pressure variability in WDS by extracting the shape, intensity, and
frequency from high-frequency pressure sensors. The CUSUM al-
gorithm was modified to directly relate parameters (i.e., threshold
and drift) to the physical characteristics of pressure changes (i.e.,
amplitude and gradient). The modified CUSUM change detection
algorithm, together with DTW distance measure and k-means
clustering technique, was applied to detect and classify the pres-
sure transient events into clusters, for which the representative
patterns were then discovered. Several performance scores were
suggested to investigate the optimal number of clusters and eval-
uate the quality of the clustering results. The proposed procedure
was demonstrated using pressure data collected by two TPTs
located at different pressure zones, where different transient pat-
terns were discovered. The example applications have shownTSDM
to be a powerful tool for transient pressure analysis, so as to reveal
consistent and unique patterns across multiple sensing locations in
WDSs. To maximize the full benefits of transient pressure analysis,
future research should be devoted to identifying the source of the
transients and its effect on pipe condition and failures.
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